Home > Fisika Kuantum > Gelombang Elektron dan Teori Kuantum

Gelombang Elektron dan Teori Kuantum


(Pustaka Fisika). Pada tahun 1924, seorang mahasiswa Prancis, L. de Broglie, mengusulkan dalam disertasinya bahwa elektron mungkin memiliki sifat-sifat gelombang. Penalarannya didasarkan pada kesimetrian alam. Karena cahaya diketahui memiliki sifat  gelombang dan partikel, mungkin materi-khususnya elektron-juga memiliki karakteristik gelombang dan partikel. Usul ini agak spekulatif karena belum ada bukti pada saat itu aspek apapun tentang elektron. Untuk frekuensi dan panjang gelombang elektron, de Broglie memilih persamaan:

f = E / h (1) dan λ = h / p (2)

dengan p merupakan momentum dan E merupakan energi elektron. Persamaan (1) diatas sama seperti persamaan Planck-Einstein untuk energi foton. Persamaan (2) juga berlaku untuk foton, sebagaimana yang dilihat dari:

λ = c / f = (hc) / (hf) = (hc) / E

Karena momentum foton dihubungkan dengan energinya oleh E = pc, kita peroleh:

λ = (hc) / pc = h / p

Persamaan de Broglie dianggap berlaku untuk seluruh materi. Akan tetapi, untuk benda-benda makroskopik, panjang gelombang yang dihitung dari persamaan (2) demikian kecilnya  sehingga tidak mungkin untuk mengamati sifat interferensi dan difraksi gelombang yang lazim. Sekalipun partikel sekecil 1 μg terlalu massif agar karakteristik gelombang teramati. Namun, keadaan ini berbeda untuk elektron berenergi rendah. Perhatikan elektron yang berenergi kinetik K. Jika elektron ini tak relativistik, momentumnya diperoleh dari:

K = p² / 2 m, atau p = √2mK

Dengan demikian panjang gelombangnya menjadi:

λ = h / p = h / √2mK = hc / √2mc²K

Dengan menggunakan hc = 1240 eV.nm dan mc² = 0,511 MeV, kita akan peroleh:

λ = 1,226 / √K  nm, K dalam elektron volt (3)

Dari persamaan (3) di atas, kita lihat bahwa dengan enegi dalam orde 10 eV memiliki panjang gelombang de Broglie berorde nanometer. Ini merupakan orde besaran ukuran atom dan jarak-pisah atom dalam kristal. Dengan demikian, apabila elektron dengan energi berorde 10 eV datang pada suatu kristal, elektron ini akan dipancarkan dengan cara hampir sama dengan sinar X dengan panjang gelombang yang sama.

Pengujian penting yang menentukan keberdaan sifat gelombang elektron ini ialah pengamatan difraksi dan interferensi gelombang elektron. Ini dilakukan secara tak sengaja pada tahun 1927 oleh C. J. Davisson dan L. H. Germer sewaktu mereka sedang mengkaji elektron yang memancar dari sasaran nikel di Bell Telephone Laboratories. Setelah memanaskan sasaran untuk membuang lapisan oksida yang telah menumpuk selama kebocoran dalam sistem vakumnya. Davisson dan Gerner menemukan bahwa intensitas elektron yang dihamburkan sebagai fungsi sudut hamburan menunjukkan maksima dan minima. Sasaran mereka telah terkristalkan, dan secara tak sengaja mengamati adanya difraksi elektron. Mereka kemudian menyiapkan sasaran yang terdiri dari atas kristal tunggal nikel dan menyelidiki fenomena ini berkali-kali. Pada tahun yang sama G. P. Thomson (putra J. J. Thomson) juga mengamati difraksi elektron dalam menghantarkan elektron melalui lembaran tipis logam. Lembaran tipis logam terdiri atas kristal kecil yang diorientasikan secara acak. Pola difraksi yang terjadi dari lembar tipis menghasilkan lingkaran yang konsentris. Sejak Thomson melakukan percobaannya, difraksi telah teramati untuk neutron, proton, dan partikel lainnya.

Tidak lama setelah sifat gelombang elektron berhasil diperagakan melalui eksperimen, disarankan bahwa elektron dibandingkan dengan cahaya mungkin dapat digunakan untuk melihat benda kecil. Sekarang mikroskop elektron merupakan satu alat penelitian yang sangat penting. Alat ini bekerja dengan cara berkas elektron dibuat sejajar dan difokuskan oleh magnet yang didesain khusus berfungsi sebagai lensa. Energi elektron biasanya 100 keV, yang menghasilkan panjang gelombang kira-kira 0,004 nm. Spesimen sasaran sangat tipis agar berkas yang dihantarkan tidak diperlambat atau dihamburkan terlalu banyak. Bayangan akhir diproyeksikan ke dalam layar pendar atau film. Berbagai distorsi yang terjadi akibat masalah pemfokusan dengan lensa magnetik membatasi resolusi hingga sepersepuluh nm, yang kira-kira seribu kali lebih baik daripada yang dapat dicapai dengan cahaya tampak.

Materi lainnya:

About these ads
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 27 other followers

%d bloggers like this: